organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Bromo-2-(4-fluorobenzylidene)indan-1-one

Yi-Xin Zhou, Jian-Qiang Wang, Ren-Jun Du, Jian-Guo Tang and Cheng Guo*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: guocheng@njut.edu.cn

Received 26 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; R factor = 0.059; wR factor = 0.137; data-to-parameter ratio = 13.5.

In the molecule of the title compound, $C_{16}H_{10}BrFO$, the indane ring system is planar with a maximum deviation of 0.020 (3) Å. An intramolecular $C-H\cdots O$ interaction results in the formation of a planar ring, which is oriented at dihedral angles of 2.24 (3) and 2.34 (3) $^{\circ}$ with respect to the adjacent rings. π - π contacts between the benzene and indane rings [centroid–centroid distances = 3.699(1) and 3.786(1)Å] may stabilize the crystal structure.

Related literature

For a related structure, see: Deeni & Ravi (2001). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

C ₁₆ H ₁₀ BrFO	a = 7.3580 (15) Å
$M_r = 317.15$	b = 7.4630 (15) Å
Triclinic, P1	c = 13.140 (3) Å

$\alpha = 101.45 \ (3)^{\circ}$	
$\beta = 96.80 \ (3)^{\circ}$	
$\gamma = 111.72 \ (3)^{\circ}$	
V = 642.2 (3) Å ³	
Z = 2	

Data collection

Enraf–Nonius CAD-4	2319 independent reflections
diffractometer	1351 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.027$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.740, T_{\max} = 0.856$	frequency: 120 min
2518 measured reflections	intensity decay: 1%
Refinement	

Mo $K\alpha$ radiation $\mu = 3.20 \text{ mm}^{-1}$

 $0.10 \times 0.10 \times 0.05 \text{ mm}$

T = 294 K

$R[F^2 > 2\sigma(F^2)] = 0.059$	172 parameters
$wR(F^2) = 0.137$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
2319 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
С3−Н3А…О	0.93	2.14	2.972 (8)	149

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2723).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Deeni, B. & Ravi, M. R. (2001). Tetrahedron Lett. 42, 3025-3027.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1936 [doi:10.1107/S1600536809025781]

4-Bromo-2-(4-fluorobenzylidene)indan-1-one

Y.-X. Zhou, J.-Q. Wang, R.-J. Du, J.-G. Tang and C. Guo

Comment

Some derivatives of 2,3-dihydro-1*H*-inden-1-one alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15) are, of course, planar and the dihedral angles between them are A/B = 4.49 (3), A/C = 5.44 (3) and B/C = 0.96 (3) °. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar ring (O/C3/C4/C7-C9/H3A), which is oriented with respect to the adjacent rings A and B at dihedral angles of 2.24 (3) and 2.34 (3) °, respectively. The indane ring system is planar with a maximum deviation of -0.020 (3) Å for atom C9. Atoms Br, O and C7 are 0.026 (3), -0.066 (3) and 0.075 (3) Å away from the plane of the indane ring system, respectively.

In the crystal structure, the π - π contacts between the benzene and the indane rings, Cg2—Cg1ⁱ and Cg1—Cg3ⁱⁱ [symmetry codes: (i) 1 - x, 2 - y, -z, (ii) 1 - x, 1 - y, -z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.699 (1) and 3.786 (1) Å, respectively.

Experimental

4-fluoro-benzaldehyde (10 mmol), 4-bromo-2,3-dihydro-1*H*-inden-1-one (10 mmol), anhydrous ethanol (10 ml) and 5 drops of piperidine were mixed in a three necked flask (50 ml). The flask was placed in a microwave synthesis system and irradiated for 7 min at 373 K with power 400 W. Then, the reaction mixture was slowly added with shaking to water (100 ml) and left to stand overnight. The precipitate was filtered, washed with water and dried (Deeni & Ravi, 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

4-Bromo-2-(4-fluorobenzylidene)indan-1-one

Crystal data	
C ₁₆ H ₁₀ BrFO	Z = 2
$M_r = 317.15$	$F_{000} = 316$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.640 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.3580 (15) Å	Cell parameters from 25 reflections
b = 7.4630 (15) Å	$\theta = 9-13^{\circ}$
c = 13.140 (3) Å	$\mu = 3.20 \text{ mm}^{-1}$
$\alpha = 101.45 \ (3)^{\circ}$	T = 294 K
$\beta = 96.80 \ (3)^{\circ}$	Block, colorless
$\gamma = 111.72 \ (3)^{\circ}$	$0.10\times0.10\times0.05~mm$
$V = 642.2 (3) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 294 K	$h = 0 \rightarrow 8$
$\omega/2\theta$ scans	$k = -8 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -15 \rightarrow 15$
$T_{\min} = 0.740, \ T_{\max} = 0.856$	3 standard reflections
2518 measured reflections	every 120 min
2319 independent reflections	intensity decay: 1%
1351 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2319 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Pri methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br	0.47010 (11)	0.25337 (12)	0.59830 (5)	0.0759 (3)
0	0.2276 (6)	0.2064 (7)	1.0423 (3)	0.0688 (12)
F	0.8344 (6)	0.2939 (6)	1.4682 (2)	0.0883 (12)
C1	0.7931 (11)	0.2919 (9)	1.3633 (4)	0.0618 (17)
C2	0.6046 (11)	0.2666 (9)	1.3199 (4)	0.0657 (18)
H2A	0.5071	0.2516	1.3604	0.079*
C3	0.5620 (9)	0.2638 (9)	1.2136 (4)	0.0558 (16)
H3A	0.4348	0.2475	1.1823	0.067*
C4	0.7092 (9)	0.2854 (8)	1.1535 (4)	0.0483 (14)
C5	0.8976 (9)	0.3109 (9)	1.2025 (4)	0.0586 (16)
H5A	0.9979	0.3272	1.1639	0.070*
C6	0.9387 (10)	0.3124 (9)	1.3084 (5)	0.0678 (18)
H6A	1.0648	0.3273	1.3407	0.081*
C7	0.6811 (9)	0.2884 (8)	1.0409 (4)	0.0543 (15)
H7A	0.7986	0.3146	1.0156	0.065*
C8	0.5240 (8)	0.2619 (8)	0.9659 (4)	0.0467 (14)
C9	0.3131 (9)	0.2200 (8)	0.9680 (4)	0.0497 (15)
C10	0.2123 (9)	0.1972 (8)	0.8595 (4)	0.0449 (13)
C11	0.0132 (10)	0.1497 (9)	0.8219 (4)	0.0621 (17)
H11A	-0.0777	0.1254	0.8663	0.075*
C12	-0.0493 (10)	0.1387 (9)	0.7156 (4)	0.0642 (17)
H12A	-0.1827	0.1093	0.6886	0.077*
C13	0.0868 (10)	0.1714 (9)	0.6507 (4)	0.0607 (17)
H13A	0.0442	0.1646	0.5800	0.073*
C14	0.2830 (10)	0.2135 (8)	0.6883 (4)	0.0510 (15)
C15	0.3494 (9)	0.2285 (8)	0.7946 (4)	0.0474 (14)
C16	0.5512 (8)	0.2711 (9)	0.8538 (4)	0.0515 (15)
H16A	0.6460	0.4025	0.8538	0.062*
H16B	0.5987	0.1720	0.8228	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0960 (6)	0.1065 (6)	0.0373 (4)	0.0458 (5)	0.0289 (3)	0.0263 (3)
0	0.063 (3)	0.110 (4)	0.033 (2)	0.030 (3)	0.0189 (19)	0.022 (2)
F	0.117 (3)	0.104 (3)	0.0362 (19)	0.036 (3)	0.0016 (19)	0.0279 (19)
C1	0.085 (5)	0.061 (4)	0.029 (3)	0.022 (4)	0.000 (3)	0.011 (3)
C2	0.087 (5)	0.075 (5)	0.034 (3)	0.029 (4)	0.016 (3)	0.018 (3)
C3	0.063 (4)	0.070 (4)	0.033 (3)	0.028 (4)	0.005 (3)	0.011 (3)
C4	0.058 (4)	0.048 (4)	0.033 (3)	0.017 (3)	0.008 (3)	0.008 (3)
C5	0.055 (4)	0.068 (4)	0.041 (3)	0.017 (3)	0.003 (3)	0.009 (3)
C6	0.069 (5)	0.078 (5)	0.050 (4)	0.027 (4)	-0.005 (3)	0.019 (3)
C7	0.060 (4)	0.064 (4)	0.035 (3)	0.020 (3)	0.015 (3)	0.013 (3)
C8	0.052 (4)	0.058 (4)	0.028 (3)	0.020 (3)	0.013 (3)	0.010 (3)
C9	0.063 (4)	0.055 (4)	0.031 (3)	0.023 (3)	0.017 (3)	0.008 (3)
C10	0.053 (4)	0.052 (4)	0.032 (3)	0.024 (3)	0.009 (3)	0.010(2)
C11	0.066 (5)	0.081 (5)	0.041 (3)	0.032 (4)	0.017 (3)	0.015 (3)
C12	0.063 (4)	0.087 (5)	0.047 (4)	0.040 (4)	0.004 (3)	0.010 (3)
C13	0.077 (5)	0.084 (5)	0.031 (3)	0.045 (4)	0.007 (3)	0.016 (3)
C14	0.077 (5)	0.055 (4)	0.028 (3)	0.033 (3)	0.015 (3)	0.011 (3)
C15	0.068 (4)	0.042 (3)	0.031 (3)	0.023 (3)	0.009 (3)	0.005 (2)
C16	0.060 (4)	0.060 (4)	0.030 (3)	0.018 (3)	0.016 (3)	0.011 (3)

Geometric parameters (Å, °)

Br—C14	1.898 (6)	C8—C9	1.470 (8)
О—С9	1.224 (6)	C8—C16	1.521 (7)
FC1	1.371 (6)	C9—C10	1.473 (7)
C1—C6	1.341 (9)	C10-C11	1.375 (8)
C1—C2	1.365 (8)	C10-C15	1.382 (7)
C2—C3	1.389 (7)	C11—C12	1.394 (7)
C2—H2A	0.9300	C11—H11A	0.9300
C3—C4	1.395 (8)	C12—C13	1.376 (8)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.385 (7)	C13—C14	1.364 (8)
C4—C7	1.476 (7)	C13—H13A	0.9300
C5—C6	1.385 (7)	C14—C15	1.393 (7)
С5—Н5А	0.9300	C15—C16	1.480 (7)
С6—Н6А	0.9300	C16—H16A	0.9700
C7—C8	1.352 (7)	C16—H16B	0.9700
С7—Н7А	0.9300		
C6—C1—C2	123.3 (5)	C8—C9—C10	107.1 (4)
C6—C1—F	118.5 (6)	C11—C10—C15	122.0 (5)
C2—C1—F	118.1 (6)	C11—C10—C9	128.3 (5)
C1—C2—C3	118.3 (6)	C15—C10—C9	109.7 (5)
C1—C2—H2A	120.9	C10-C11-C12	118.4 (6)
С3—С2—Н2А	120.9	C10-C11-H11A	120.8

C2—C3—C4	120.3 (6)		C12—C11—H11A		120.8
С2—С3—НЗА	119.8		C13—C12—C11		119.9 (6)
С4—С3—НЗА	119.8		C13—C12—H12A		120.1
C5—C4—C3	118.4 (5)		C11—C12—H12A		120.1
C5—C4—C7	116.8 (5)		C14—C13—C12		121.2 (5)
C3—C4—C7	124.7 (5)		С14—С13—Н13А		119.4
C4—C5—C6	120.9 (6)		С12—С13—Н13А		119.4
С4—С5—Н5А	119.5		C13—C14—C15		119.9 (5)
С6—С5—Н5А	119.5		C13—C14—Br		121.3 (4)
C1—C6—C5	118.7 (6)		C15—C14—Br		118.8 (5)
С1—С6—Н6А	120.7		C10—C15—C14		118.5 (5)
С5—С6—Н6А	120.7		C10-C15-C16		111.1 (4)
C8—C7—C4	134.8 (5)		C14—C15—C16		130.3 (5)
С8—С7—Н7А	112.6		C15—C16—C8		104.5 (4)
С4—С7—Н7А	112.6		C15—C16—H16A		110.8
С7—С8—С9	132.6 (5)		C8—C16—H16A		110.8
C7—C8—C16	119.9 (5)		C15—C16—H16B		110.8
C9—C8—C16	107.5 (4)		C8—C16—H16B		110.8
0—C9—C8	129.6 (5)		H16A—C16—H16B		108.9
O—C9—C10	123.4 (5)				
C6—C1—C2—C3	-0.6 (10)		O—C9—C10—C15		177.6 (5)
FC1C3	-179.8 (5)		C8—C9—C10—C15		-1.8 (6)
C1—C2—C3—C4	0.3 (9)		C15—C10—C11—C12		-1.8 (9)
C2—C3—C4—C5	-0.5 (9)		C9—C10—C11—C12		179.1 (5)
C2—C3—C4—C7	-178.8 (5)		C10-C11-C12-C13		1.2 (9)
C3—C4—C5—C6	0.8 (9)		C11—C12—C13—C14		0.4 (10)
C7—C4—C5—C6	179.3 (5)		C12—C13—C14—C15		-1.4 (9)
C2-C1-C6-C5	1.0 (10)		C12—C13—C14—Br		178.7 (5)
F-C1-C6-C5	-179.9 (5)		C11—C10—C15—C14		0.8 (9)
C4—C5—C6—C1	-1.1 (10)		C9—C10—C15—C14		180.0 (5)
C5—C4—C7—C8	176.9 (6)		C11—C10—C15—C16		-178.2 (5)
C3—C4—C7—C8	-4.8 (11)		C9—C10—C15—C16		0.9 (7)
C4—C7—C8—C9	0.7 (12)		C13—C14—C15—C10		0.9 (8)
C4—C7—C8—C16	-178.4 (6)		Br—C14—C15—C10		-179.3 (4)
С7—С8—С9—О	3.4 (11)		C13—C14—C15—C16		179.7 (6)
С16—С8—С9—О	-177.5 (6)		Br—C14—C15—C16		-0.5 (8)
C7—C8—C9—C10	-177.3 (6)		C10—C15—C16—C8		0.2 (6)
C16—C8—C9—C10	1.9 (6)		C14—C15—C16—C8		-178.7 (5)
O-C9-C10-C11	-3.3 (10)		C7—C8—C16—C15		178.0 (5)
C8—C9—C10—C11	177.4 (6)		C9—C8—C16—C15		-1.3 (6)
Hydrogen-bond geometry (Å, °)					
D—H···A	I)—Н	$H \cdots A$	$D \cdots A$	D—H··· A

0.93

2.14 2.972 (8)

С3—НЗА…О

149

